67,921 research outputs found

    Carbon-enhanced metal-poor stars: a window on AGB nucleosynthesis and binary evolution. II. Statistical analysis of a sample of 67 CEMP-ss stars

    Get PDF
    Many observed CEMP stars are found in binary systems and show enhanced abundances of ss-elements. The origin of the chemical abundances of these CEMP-ss stars is believed to be accretion in the past of enriched material from a primary star in the AGB phase. We investigate the mechanism of mass transfer and the process of nucleosynthesis in low-metallicity AGB stars by modelling the binary systems in which the observed CEMP-ss stars were formed. For this purpose we compare a sample of 6767 CEMP-ss stars with a grid of binary stars generated by our binary evolution and nucleosynthesis model. We classify our sample CEMP-ss stars in three groups based on the observed abundance of europium. In CEMP−s/r-s/r stars the europium-to-iron ratio is more than ten times higher than in the Sun, whereas it is lower than this threshold in CEMP−s/nr-s/nr stars. No measurement of europium is currently available for CEMP-s/urs/ur stars. On average our models reproduce well the abundances observed in CEMP-s/nrs/nr stars, whereas in CEMP-s/rs/r stars and CEMP-s/urs/ur stars the abundances of the light-ss elements are systematically overpredicted by our models and in CEMP-s/rs/r stars the abundances of the heavy-ss elements are underestimated. In all stars our modelled abundances of sodium overestimate the observations. This discrepancy is reduced only in models that underestimate the abundances of most of the ss-elements. Furthermore, the abundance of lead is underpredicted in most of our model stars. These results point to the limitations of our AGB nucleosynthesis model, particularly in the predictions of the element-to-element ratios. Finally, in our models CEMP-ss stars are typically formed in wide systems with periods above 10000 days, while most of the observed CEMP-ss stars are found in relatively close orbits with periods below 5000 days.Comment: 23 pages, 8 figures, accepted for publication on Astronomy & Astrophysic

    Nebular abundances of southern symbiotic stars

    Full text link
    We have calculated relative elemental abundances for a sample of 43 symbiotic stars. Helium abundances and the relative elemental abundances N/O, Ne/O, Ar/O were derived from new spectra collected in the optical range through low dispersion spectroscopy. The He ionic abundances were derived taking into account self-absorption effects in Balmer lines. We found that the symbiotic stars in the galactic bulge have heavy element abundances showing the same wide distribution as other bulge objects. In the galactic disk, the symbiotic stars follow the abundance gradient as derived from different kinds of objects.Comment: 12 pages, 6 figures, A&A - accepte

    Carbon-enhanced metal-poor stars: the most pristine objects?

    Get PDF
    Carbon-enhanced metal poor stars (CEMP) form a significant proportion of the metal-poor stars, their origin is not well understood. Three very metal-poor C-rich turnoff stars were selected from the SDSS survey, observed with the ESO VLT (UVES) to precisely determine the element abundances. In turnoff stars (unlike giants) the carbon abundance has not been affected by mixing with deep layers and is therefore easier to interpret. The analysis was performed with 1D LTE static model atmospheres. When available, non-LTE corrections were applied to the classical LTE abundances. The 3D effects on the CH and CN molecular bands were computed using hydrodynamical simulations of the stellar atmosphere (CO5BOLD) and are found to be very important. To facilitate a comparison with previous results, only 1D abundances are used in the discussion. The abundances (or upper limits) of the elements enable us to place these stars in different CEMP classes. The carbon abundances confirm the existence of a plateau at A(C)= 8.25 for [Fe/H] \geq -3.4. The most metal-poor stars ([Fe/H] < -3.4) have significantly lower carbon abundances, suggesting a lower plateau at A(C) \approx 6.5. Detailed analyses of a larger sample of very low metallicity carbon-rich stars are required to confirm (or refute) this possible second plateau and specify the behavior of the CEMP stars at very low metallicity

    Chemical composition of A and F dwarfs members of the Pleiades open cluster

    Full text link
    Abundances of 18 chemical elements have been derived for 16 A (normal and chemically peculiar CP) and 5 F dwarfs members of the Pleiades open cluster in order to set constraints on evolutionary models. The abundances, rotational velocities and microturbulent velocities were derived by iteratively adjusting synthetic spectra to observations at high resolution (R~42000 and R~75000) and high signal-to-noise (S/N) ratios. The abundances obtained do not exhibit any clear correlation with the effective temperature nor the projected rotational velocity. Interestingly, A stars exhibit larger star-to-star variations in C, Sc, Ti, V, Cr, Mn, Sr, Y, Zr and Ba than F stars. F stars exhibit solar abundances for almost all the elements. In A stars, the abundances of Si, Ti and Cr are found to be correlated with that of Fe, the [X/Fe] ratios being solar for these three elements. The derived abundances have been compared to the predictions of published evolutionary models at the age of Pleiades (100 Myr). For the F stars, the predicted slight underabundances of light elements and overabundances of Cr, Fe and Ni are indeed confirmed by our findings. For A stars, the predicted overabundances in iron peak elements are confirmed in a few stars only. The large scatter of the abundances in A stars, already found in the Hyades, Coma Berenices and the UMa group and in field stars appears to be a characteristic property of dwarf A stars. The occurence of hydrodynamical processes competing with radiative diffusion in the radiative zones of the A dwarfs might account for the found scatter in abundances.Comment: 7 pages, 3 figures, accepted in A&

    A holistic approach to carbon-enhanced metal-poor stars

    Full text link
    By considering the various CEMP subclasses separately, we try to derive, from the specific signatures imprinted on the abundances, parameters (such as metallicity, mass, temperature, and neutron source) characterizing AGB nucleosynthesis from the specific signatures imprinted on the abundances, and separate them from the impact of thermohaline mixing, first dredge-up, and dilution associated with the mass transfer from the companion.To put CEMP stars in a broad context, we collect abundances for about 180 stars of various metallicities, luminosity classes, and abundance patterns, from our own sample and from literature. First, we show that there are CEMP stars which share the properties of CEMP-s stars and CEMP-no stars (which we call CEMP-low-s stars). We also show that there is a strong correlation between Ba and C abundances in the s-only CEMP stars. This strongly points at the operation of the 13C neutron source in low-mass AGB stars. For the CEMP-rs stars (seemingly enriched with elements from both the s- and r-processes), the correlation of the N abundances with abundances of heavy elements from the 2nd and 3rd s-process peaks bears instead the signature of the 22Ne neutron source. Adding the fact that CEMP-rs stars exhibit O and Mg enhancements, we conclude that extremely hot conditions prevailed during the thermal pulses of the contaminating AGB stars. Finally, we argue that most CEMP-no stars (with no overabundances for the neutron-capture elements) are likely the extremely metal-poor counterparts of CEMP neutron-capture-rich stars. We also show that the C enhancement in CEMP-no stars declines with metallicity at extremely low metallicity ([Fe/H]~< -3.2). This trend is not predicted by any of the current AGB models.Comment: 27 pages, 24 figures, accepted for publication in A&

    The abundance of HCN in circumstellar envelopes of AGB stars of different chemical types

    Full text link
    A multi-transition survey of HCN (sub-) millimeter line emission from a large sample of AGB stars of different chemical type is presented. The data are analysed and circumstellar HCN abundances are estimated. The sample stars span a large range of properties such as mass-loss rate and photospheric C/O-ratio. The analysis of the new data allows for more accurate estimates of the circumstellar HCN abundances and puts new constraints on chemical models. In order to constrain the circumstellar HCN abundance distribution a detailed non-LTE excitation analysis, based on the Monte Carlo method, is performed. Effects of line overlaps and radiative excitation from dust grains are included. The median values for the derived abundances of HCN (with respect to H2) are 3x10-5, 7x10-7 and 10-7 for carbon stars (25 stars), S-type AGB stars (19 stars) and M-type AGB stars (25 stars), respectively. The estimated sizes of the HCN envelopes are similar to those obtained in the case of SiO for the same sample of sources and agree well with previous results from interferometric observations, when these are available. We find that there is a clear dependence of the derived circumstellar HCN abundance on the C/O-ratio of the star, in that carbon stars have about two orders of magnitude higher abundances than M-type AGB stars, on average. The derived HCN abundances of the S-type AGB stars have a larger spread and typically fall in between those of the two other types, however, slightly closer to the values for the M-type AGB stars. For the M-type stars, the estimated abundances are much higher than what would be expected if HCN is formed in thermal equilibrium. However, the results are also in contrast to predictions from recent non-LTE chemical models, where very little difference is expected in the HCN abundances between the various types of AGB stars.Comment: Accepted for publication in A&

    Detailed Analysis of Nearby Bulgelike Dwarf Stars II. Lithium Abundances

    Get PDF
    Li abundances are derived for a sample of bulgelike stars with isochronal ages of 10-11 Gyr. These stars have orbits with pericentric distances, Rp, as small as 2-3 kpc and Zmax < 1 kpc. The sample comprises G and K dwarf stars in the metallicity range -0.80<[Fe/H]< +0.40. Few data of Li abundances in old turn-off stars (> 4.5 Gyr) within the present metallicity range are available. M67 (4.7 Gyr) and NGC 188 (6 Gyr) are the oldest studied metal-rich open clusters with late-type stars. Li abundances have also been studied for few samples of old metal-rich field stars. In the present work a high dispersion in Li abundances is found for bulgelike stars for all the metallicity range, comparable with values in M67. The role of metallicity and age on a Li depletion pattern is discussed. The possible connection between Li depletion and oxygen abundance due to atmospheric opacity effects is investigated.Comment: 9 pages, 7 figure

    Carbon and Oxygen abundances across the Hertzsprung gap

    Full text link
    We derived atmospheric parameters and spectroscopic abundances for C and O for a large sample of stars located in the Hertzsprung gap in the Hertzsprung-Russell Diagram in order to detect chemical peculiarities and get a comprehensive overview of the population of stars in this evolutionary state. We have observed and analyzed high resolution spectra (R = 60 000) of 188 stars in the mass range 2 - 5 Msun with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory including 28 stars previously identified as Am/Ap stars. We find that the C and O abundances of the majority of stars in the Hertzsprung gap are in accordance with abundances derived for local lower mass dwarfs but detect expected peculiarities for the Am/Ap stars. The C and O abundances of stars with Teff < 6500 K are slightly lower than for the hotter objects but the C/O ratio is constant in the analyzed temperature domain. No indication of an alteration of the C and O abundances of the stars by mixing during the evolution across the Hertzsprung gap could be found before the homogenization of their atmospheres by the first dredge-up.Comment: 13 pages, 12 figures, accepted for publication in the Astrophysical Journa
    • …
    corecore